Paraphrase detection model

Hello, I want to test the pretrained model for paraphrase detection.
I did not find the model. So should I train it on the dataset from paraphrase.ru by myself?
I guess I shoud change some paths in the config paraphraser_rubert.json and then run:
python -m deeppavlov predict deeppavlov/configs/classifiers/paraphraser_rubert.json

Hi @alissiawells,
Sorry for the late reply.
You can download the model itself and required files by running

python -m deeppavlov download paraphraser_rubert

To evaluate it on paraphraser.ru dataset you can run

python -m deeppavlov evaluate [-d] paraphraser_rubert

(-d will ensure download of the model if you did not run the download command earlier)

If you want to infer the model on your own data you can do it with a python code:

from deeppavlov import build_model, configs

model = build_model(configs.classifiers.paraphraser_rubert[, download=True])

print(model([text_a_1, text_a_2, text_a_3, ...],
            [text_b_1, text_b_2, text_b_3, ...]))

You can also infer the model on all data divided on batches:

model.batched_call(list_of_texts_a, list_of_texts_b, batch_size=64)

Hope this helps

1 Like

Thank you! Is metric or probability inference now implemented in the library?

To get probabilities you can add "return_probas": true, to your configuration file for the "class_name": "bert_classifier", block.
Or for a built model you can just run

model[-1].return_probas = True

and your model will start returning probabilities instead of class indexes.

Π”ΠΎΠ±Ρ€Ρ‹ΠΉ дСнь! МоТно Π»ΠΈ Π·Π°Π΄Π°Ρ‡Ρƒ paraphraser_rubert Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π² Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ (embeddings) Π²ΠΈΠ΄Π΅? Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ Π²Π²ΠΈΠ΄Ρƒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ части ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π²Ρ‹Ρ…ΠΎΠ΄ΠΎΠ² для Π½Π°Π±ΠΎΡ€Π°, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΈΠ· 10 000 ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΡ‚ΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ Π±Ρ‹ ΠΏΠΎΠΏΠ°Ρ€Π½ΠΎ ΠΏΠΎΠ΄Π°Ρ‚ΡŒ Π½Π° Π²Ρ…ΠΎΠ΄ Π΄Ρ€ΡƒΠ³ΠΎΠΉ части ΠΌΠΎΠ΄Π΅Π»ΠΈ, которая Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ быстрСС Ρ‡Π΅ΠΌ Ρ‡Π°ΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‰Π°Ρ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ (ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ слой, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠΉ ΠΏΠ΅Ρ€Π΅Ρ„Ρ€Π°Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΡƒΡŽ модСль?). Насколько я понимаю, просто использованиС RuBert Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ИспользованиС Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ·Π°Ρ†ΠΈΠΈ RUBERT + расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ (косинуса, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊΠ°ΠΊ ΠΌΠ΅Ρ€Ρ‹ близости) для опрСдСлСния пСрСфразирования Π½Π΅ даст Ρ‚Π°ΠΊΠΎΠ³ΠΎ ΠΆΠ΅ качСства ΠΊΠ°ΠΊ paraphraser_rubert, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ Π΄ΠΎΠΎΠ±ΡƒΡ‡Π΅Π½Ρ‹ (fine tuned) ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎ Π½Π° эту Π·Π°Π΄Π°Ρ‡Ρƒ, Π½ΠΎ ΠΊΠ°ΠΊ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ paraphraser_rubert для кластСризации ΠΈΠ»ΠΈ Π΄Π°ΠΆΠ΅ простого ΠΏΠΎΠΏΠ°Ρ€Π½ΠΎΠ³ΠΎ сравнСния 10 000 ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π·Π° β€œΡ€Π°Π·ΡƒΠΌΠ½ΠΎΠ΅β€ врСмя нСпонятно (10 000x10 0000 Π²Ρ‹Π·ΠΎΠ²ΠΎΠ² paraphraser_rubert)?