Hello, I want to test the pretrained model for paraphrase detection.
I did not find the model. So should I train it on the dataset from paraphrase.ru by myself?
I guess I shoud change some paths in the config paraphraser_rubert.json and then run:
python -m deeppavlov predict deeppavlov/configs/classifiers/paraphraser_rubert.json
Hi @alissiawells,
Sorry for the late reply.
You can download the model itself and required files by running
python -m deeppavlov download paraphraser_rubert
To evaluate it on paraphraser.ru
dataset you can run
python -m deeppavlov evaluate [-d] paraphraser_rubert
(-d
will ensure download of the model if you did not run the download
command earlier)
If you want to infer the model on your own data you can do it with a python code:
from deeppavlov import build_model, configs
model = build_model(configs.classifiers.paraphraser_rubert[, download=True])
print(model([text_a_1, text_a_2, text_a_3, ...],
[text_b_1, text_b_2, text_b_3, ...]))
You can also infer the model on all data divided on batches:
model.batched_call(list_of_texts_a, list_of_texts_b, batch_size=64)
Hope this helps
Thank you! Is metric or probability inference now implemented in the library?
To get probabilities you can add "return_probas": true,
to your configuration file for the "class_name": "bert_classifier",
block.
Or for a built model you can just run
model[-1].return_probas = True
and your model will start returning probabilities instead of class indexes.
ΠΠΎΠ±ΡΡΠΉ Π΄Π΅Π½Ρ! ΠΠΎΠΆΠ½ΠΎ Π»ΠΈ Π·Π°Π΄Π°ΡΡ paraphraser_rubert ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°ΡΡ Π² Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΌ (embeddings) Π²ΠΈΠ΄Π΅? ΠΠΌΠ΅Π΅ΡΡΡ Π²Π²ΠΈΠ΄Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ Π²ΡΡ ΠΎΠ΄ΠΎΠ² Π΄Π»Ρ Π½Π°Π±ΠΎΡΠ°, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΈΠ· 10 000 ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΡΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π±ΡΠ»ΠΎ Π±Ρ ΠΏΠΎΠΏΠ°ΡΠ½ΠΎ ΠΏΠΎΠ΄Π°ΡΡ Π½Π° Π²Ρ ΠΎΠ΄ Π΄ΡΡΠ³ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π±ΡΡΡΡΠ΅Π΅ ΡΠ΅ΠΌ ΡΠ°ΡΡΡ ΠΏΠΎΠ»ΡΡΠ°ΡΡΠ°Ρ Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ (ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ»ΠΎΠΉ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠΉ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΠ±ΡΡΠΈΡΡ ΠΊΠ°ΠΊ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ?). ΠΠ°ΡΠΊΠΎΠ»ΡΠΊΠΎ Ρ ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ, ΠΏΡΠΎΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ RuBert Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΈΠ·Π°ΡΠΈΠΈ RUBERT + ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ (ΠΊΠΎΡΠΈΠ½ΡΡΠ°, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΊΠ°ΠΊ ΠΌΠ΅ΡΡ Π±Π»ΠΈΠ·ΠΎΡΡΠΈ) Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ Π΄Π°ΡΡ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΆΠ΅ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΊΠ°ΠΊ paraphraser_rubert, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ±ΡΡΠ½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ Π΄ΠΎΠΎΠ±ΡΡΠ΅Π½Ρ (fine tuned) ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎ Π½Π° ΡΡΡ Π·Π°Π΄Π°ΡΡ, Π½ΠΎ ΠΊΠ°ΠΊ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ paraphraser_rubert Π΄Π»Ρ ΠΊΠ»Π°ΡΡΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΈΠ»ΠΈ Π΄Π°ΠΆΠ΅ ΠΏΡΠΎΡΡΠΎΠ³ΠΎ ΠΏΠΎΠΏΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ 10 000 ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π·Π° βΡΠ°Π·ΡΠΌΠ½ΠΎΠ΅β Π²ΡΠ΅ΠΌΡ Π½Π΅ΠΏΠΎΠ½ΡΡΠ½ΠΎ (10 000x10 0000 Π²ΡΠ·ΠΎΠ²ΠΎΠ² paraphraser_rubert)?