I am trying finetune the pretrained model with my custom data. The code is working perfectly sometimes. That means I am able to create a new model with good accuracy. But sometimes I am getting a weird training and validation F1 score with the same code
2021-07-17 19:13:37.480 INFO in ‘deeppavlov.core.data.simple_vocab’[‘simple_vocab’] at line 115: [loading vocabulary from /Users/v.supriya/.deeppavlov/models/ner_ontonotes_bert/tag.dict]
2021-07-17 19:13:37.712 INFO in ‘deeppavlov.core.data.simple_vocab’[‘simple_vocab’] at line 101: [saving vocabulary to /Users/v.supriya/.deeppavlov/models/ner_ontonotes_bert/tag.dict]
2021-07-17 19:13:53.506 INFO in ‘deeppavlov.core.models.tf_model’[‘tf_model’] at line 51: [loading model from /Users/v.supriya/.deeppavlov/models/ner_ontonotes_bert/model]
2021-07-17 19:14:50.141 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 199: Initial best ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0.7467}, “time_spent”: “0:00:54”, “epochs_done”: 0, “batches_seen”: 0, “train_examples_seen”: 0, “impatience”: 0, “patience_limit”: 100}}
WARNING:tensorflow:From /Users/v.supriya/opt/anaconda3/envs/deeppavlov_15/lib/python3.7/site-packages/deeppavlov/core/trainers/nn_trainer.py:250: The name tf.Summary is deprecated. Please use tf.compat.v1.Summary instead.
{“train”: {“eval_examples_count”: 16, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:04:08”, “epochs_done”: 0, “batches_seen”: 40, “train_examples_seen”: 640, “head_learning_rate”: 0.009999999776482582, “bert_learning_rate”: 1.9999999552965164e-05, “loss”: 7.962039543688297}}
2021-07-17 19:18:56.89 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 212: Did not improve on the ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:05:00”, “epochs_done”: 0, “batches_seen”: 40, “train_examples_seen”: 640, “impatience”: 1, “patience_limit”: 100}}
{“train”: {“eval_examples_count”: 16, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:08:14”, “epochs_done”: 0, “batches_seen”: 80, “train_examples_seen”: 1280, “head_learning_rate”: 0.009999999776482582, “bert_learning_rate”: 1.9999999552965164e-05, “loss”: 4.009204307198525}}
2021-07-17 19:23:01.418 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 212: Did not improve on the ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:09:05”, “epochs_done”: 0, “batches_seen”: 80, “train_examples_seen”: 1280, “impatience”: 2, “patience_limit”: 100}}
{“train”: {“eval_examples_count”: 16, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:12:54”, “epochs_done”: 0, “batches_seen”: 120, “train_examples_seen”: 1920, “head_learning_rate”: 0.009999999776482582, “bert_learning_rate”: 1.9999999552965164e-05, “loss”: 2.8950684279203416}}
2021-07-17 19:27:46.542 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 212: Did not improve on the ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:13:50”, “epochs_done”: 0, “batches_seen”: 120, “train_examples_seen”: 1920, “impatience”: 3, “patience_limit”: 100}}
{“train”: {“eval_examples_count”: 16, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:17:01”, “epochs_done”: 0, “batches_seen”: 160, “train_examples_seen”: 2560, “head_learning_rate”: 0.009999999776482582, “bert_learning_rate”: 1.9999999552965164e-05, “loss”: 2.902792666107416}}
2021-07-17 19:31:55.664 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 212: Did not improve on the ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:17:59”, “epochs_done”: 0, “batches_seen”: 160, “train_examples_seen”: 2560, “impatience”: 4, “patience_limit”: 100}}
{“train”: {“eval_examples_count”: 16, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:21:18”, “epochs_done”: 0, “batches_seen”: 200, “train_examples_seen”: 3200, “head_learning_rate”: 0.009999999776482582, “bert_learning_rate”: 1.9999999552965164e-05, “loss”: 2.4636255234479902}}
2021-07-17 19:36:12.793 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 212: Did not improve on the ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:22:16”, “epochs_done”: 0, “batches_seen”: 200, “train_examples_seen”: 3200, “impatience”: 5, “patience_limit”: 100}}
{“train”: {“eval_examples_count”: 16, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:25:22”, “epochs_done”: 0, “batches_seen”: 240, “train_examples_seen”: 3840, “head_learning_rate”: 0.009999999776482582, “bert_learning_rate”: 1.9999999552965164e-05, “loss”: 2.249296957999468}}
2021-07-17 19:40:18.927 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 212: Did not improve on the ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:26:23”, “epochs_done”: 0, “batches_seen”: 240, “train_examples_seen”: 3840, “impatience”: 6, “patience_limit”: 100}}
{“train”: {“eval_examples_count”: 16, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:29:30”, “epochs_done”: 0, “batches_seen”: 280, “train_examples_seen”: 4480, “head_learning_rate”: 0.009999999776482582, “bert_learning_rate”: 1.9999999552965164e-05, “loss”: 2.758265073597431}}
2021-07-17 19:44:27.746 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 212: Did not improve on the ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:30:31”, “epochs_done”: 0, “batches_seen”: 280, “train_examples_seen”: 4480, “impatience”: 7, “patience_limit”: 100}}
{“train”: {“eval_examples_count”: 16, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:34:03”, “epochs_done”: 0, “batches_seen”: 320, “train_examples_seen”: 5120, “head_learning_rate”: 0.009999999776482582, “bert_learning_rate”: 1.9999999552965164e-05, “loss”: 2.457407708466053}}
2021-07-17 19:48:55.990 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 212: Did not improve on the ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:35:00”, “epochs_done”: 0, “batches_seen”: 320, “train_examples_seen”: 5120, “impatience”: 8, “patience_limit”: 100}}
{“train”: {“eval_examples_count”: 16, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:38:25”, “epochs_done”: 0, “batches_seen”: 360, “train_examples_seen”: 5760, “head_learning_rate”: 0.009999999776482582, “bert_learning_rate”: 1.9999999552965164e-05, “loss”: 3.3798248738050463}}
2021-07-17 19:53:16.189 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 212: Did not improve on the ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:39:20”, “epochs_done”: 0, “batches_seen”: 360, “train_examples_seen”: 5760, “impatience”: 9, “patience_limit”: 100}}
{“train”: {“eval_examples_count”: 16, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:43:12”, “epochs_done”: 1, “batches_seen”: 400, “train_examples_seen”: 6389, “head_learning_rate”: 0.009999999776482582, “bert_learning_rate”: 1.9999999552965164e-05, “loss”: 3.8420878514647483}}
2021-07-17 19:58:06.655 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 212: Did not improve on the ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:44:10”, “epochs_done”: 1, “batches_seen”: 400, “train_examples_seen”: 6389, “impatience”: 10, “patience_limit”: 100}}
{“train”: {“eval_examples_count”: 16, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:47:38”, “epochs_done”: 1, “batches_seen”: 440, “train_examples_seen”: 7029, “head_learning_rate”: 0.009999999776482582, “bert_learning_rate”: 1.9999999552965164e-05, “loss”: 2.6904850624501706}}
2021-07-17 20:02:32.435 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 212: Did not improve on the ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:48:36”, “epochs_done”: 1, “batches_seen”: 440, “train_examples_seen”: 7029, “impatience”: 11, “patience_limit”: 100}}
{“train”: {“eval_examples_count”: 16, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:51:57”, “epochs_done”: 1, “batches_seen”: 480, “train_examples_seen”: 7669, “head_learning_rate”: 0.009999999776482582, “bert_learning_rate”: 1.9999999552965164e-05, “loss”: 3.107879289984703}}
2021-07-17 20:06:47.835 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 212: Did not improve on the ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:52:51”, “epochs_done”: 1, “batches_seen”: 480, “train_examples_seen”: 7669, “impatience”: 12, “patience_limit”: 100}}
{“train”: {“eval_examples_count”: 16, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:55:52”, “epochs_done”: 1, “batches_seen”: 520, “train_examples_seen”: 8309, “head_learning_rate”: 0.009999999776482582, “bert_learning_rate”: 1.9999999552965164e-05, “loss”: 2.2718755930662153}}
2021-07-17 20:10:40.54 INFO in ‘deeppavlov.core.trainers.nn_trainer’[‘nn_trainer’] at line 212: Did not improve on the ner_f1 of 0
{“valid”: {“eval_examples_count”: 753, “metrics”: {“ner_f1”: 0, “ner_token_f1”: 0}, “time_spent”: “0:56:44”, “epochs_done”: 1, “batches_seen”: 520, “train_examples_seen”: 8309, “impatience”: 13, “patience_limit”: 100}}
code used for training is given below and I am using deeppavlov 0.15:
config_dict = parse_config(configs.ner.ner_ontonotes_bert)
config_dict[‘dataset_reader’][‘data_path’] = //path to script folder
train_model(config_dict, download=True)